

DATASHEET

SCALMALLOY®

Type analysis

Single figures are nominal except where noted.

Aluminum	Balance	Magnesium	4.20 to 5.10 %	Scandium	0.60 to 0.88 %
Manganese	0.30 to 0.80 %	Zirconium	0.20 to 0.50 %	Iron	0.40 %
Silicon	0.40 %	Zinc	0.25 %	Titanium	0.15 %
Copper	0.10 %	Vanadium	0.10 %	Oxygen	0.05 %

Forms manufactured

Powder

Description

Scalmalloy is a powder product designed to be processed using laser-powder bed fusion (L-BPF) additive manufacturing. Due to high cooling rates and rapid solidification, a unique microstructure is achieved that rivals the performance of the highest-grade aluminum foundry products. Coupling these material properties with the design freedom provided by AM processes can enable highperformance parts with a level of functionality previously impossible to achieve.

Key Properties:

- Lightweight
- High strength with good ductility

Markets:

- Aerospace
- Automotive

Applications:

- Brackets
- Thermal management components
- Waveguides
- Ducts

- Good corrosion resistance
- High thermal conductivity
- Defense
- Marine

> SCALMALLOY

Powder properties

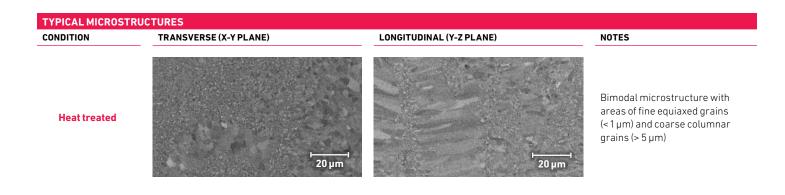
PART NUMBER	CT PR SCALMALLOY F
NOMINAL PARTICLE SIZE	20–63 µm
APPLICATION	L-PBF ¹
MAXIMUM PARTICLE SIZE	Max 10 wt% > 63 µm²
MINIMUM PARTICLE SIZE	Max 10 wt% < 20 µm³
LSD PERCENTILE	D10, D50, D90 ³ , reported
ATOMIZATION	Nitrogen gas atomized
APPARENT DENSITY (G/CM ³)	Measured according to ASTM B212 ⁴ and reported
HALL FLOW (S/50G)	Measured according to ASTM B213 ⁵ and reported

¹ ASTM/ISO 52900: Laser-Powder Bed Fusion (L-PBF), Electron Beam-Powder Bed Fusion (EB-PBF), Directed Energy Deposition (DED)

 $^{\rm 2}$ ASTM B214 Standard Test Method for Sieve Analysis for Metal Powders

³ ASTM B822 Standard Test Method for Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering

⁴ ASTM B212 Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel


⁵ ASTM B213 Standard Test Method for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel Testing of powder will fulfill certification requirements to Nadcap Materials Testing and ISO/IEC 17025 Chemical, per relevant ASTM procedures

Additive manufacturing process guidance

ASTM/IS0 52900: LASER-POWDER BED FUSION (L-PBF)					
Laser-powder bed fusion (L-PBF)	Qualified machines: 3D Systems DMP 350. Additive Industries – MetalFab 1. EOS M280/290 and M400. Renishaw RenAM 500Q. SLM Solutions SLM 125, SLM 280, and SLM 500. Concept Laser M2.				
Heat treatment	325°C for 4 hours. Inert atmosphere is not necessary.				
Hot isostatic pressing (HIP)	HIP may be conducted for microstructure homogenization; removal of residual spatter-induced voids, trapped gas porosity in powder, and keyhole porosities. This can also bring about improved fatigue performance of as-built or heat treated material. To achieve up to full density (100%): Process components with minimum pressure of 1000 bar, at a temperature of 325°C for 2 hours in inert gas (e.g. argon).				
Machinability	Scalmalloy is relatively similar to typical aluminum alloys and can be readily machined in either as-built, heat treated, or HIPed condition.				

> SCALMALLOY

Corrosion resistance

Important Note:

The following 4-level rating scale (Excellent, Good, Moderate, Restricted) is intended for comparative purposes only and is derived from experiences with wrought product. Additive manufactured material may perform differently; corrosion testing is recommended. Factors that affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Salt Spray (NaCl)

Excellent

CORROSION TEST RESULTS

SALT WATER SPRAY TEST DIN ISO 50021SS / 5% NaCL, 48H, NO SURFACE PROTECTION				
CONDITION	AVERAGE CORROSION RATE, MDD			
As-printed surface	No weight loss due to correction, slight weight gain due to salt deposits			

SALT WATER SPRAY TEST DIN ISO 9227-NSS / 50±5 G NaCL/L pH LEVEL: 6.5-7.2					
CONDITION AND METHOD	LAYER THICKNESS (µm)	TEST DURATION (H)	RESULT		
Anodized surface - Lasox	< 2	1000	No corrosion, Rp10		
Anodized surface - HC	60–70	1000	No corrosion, Rp10		
Anodized surface - TE	~ 30	1000	No corrosion, Rp10		

> SCALMALLOY

Physical properties

PROPERTY	At or From	English Units	Metric Units
DENSITY	Room temperature	167 lb/ft ³	2670 kg/m ³
	Room temperature	-	95 W/m·K
THERMAL CONDUCTIVITY	100°C	—	110 W/m·K
	200°C	_	120 W/m·K
ELASTIC MODULUS (E)	Room temperature	10.15 Mpsi	70 GPa

Typical mechanical properties

ROOM TEMPERATURE / HEAT TREATED AND MACHINED							
SPECIFICATION	ORIENTATION	0.2% YIELD STRENGTH		ULTIMATE TENSILE STRENGTH		ELONGATION IN 4D OR 2 IN	
		ksi	MPa	ksi	MPa	%	
DIN EN 2002-001	Z	70.0-72.5	480-500	74.0-76.9	510-530	13–16	

ELEVATED TEMPERATURE / HEAT TREATED AND MACHINED					
TEMPERATURE	ORIENTATION	0.2% YIELD Strength		ULTIMATE TENSILE STRENGTH	
		ksi	MPa	ksi	MPa
100°C	Z	55.0	380	58.0	400
150°C	Z	40.0	275	45.7	315
200°C	Z	20.0	139	23.6	163
250°C	Z	10.3	71	11.3	78

FATIGUE QUALITY		
CONDITION	IQF' (MPa)	
Heat treated, as-built surface (blasted)	110	
Heat treated, milled surface	150	
Heat treated, milled surface + HIP ²	250	

¹ The Fatigue Quality Index (IQF) represents the stress level at which the specimen life will reach 100,000 load cycles with a notch factor FT = 1 and an R-Ratio of 0.1 ² Hot Isostatic Pressing (HIP) at 325°C / 1000 bar / 2 hours

For additional information, please contact your nearest sales office: info@carpenteradditive.com | 610 208 2000

The mechanical and physical properties of any additively-manufactured material are strongly dependent on the processing conditions used to produce the final part. Significantly differing properties can be obtained by utilizing different equipment, different process parameters, different build rates and different geometries. The properties listed are intended as a quide only and should not be used as design data.

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation.